Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We describe a method for laser-driven planar compression of crystalline hydrogen that starts with a sample of solid para-hydrogen (even-valued rotational quantum number j) having an entropy of 0.06 kB/molecule at 10 K and 2 atm, with Boltzmann constant kB. Starting with this low-entropy state, the sample is compressed using a small initial shock (<0.2 GPa), followed by a pressure ramp that approaches isentropic loading as the sample is taken to hundreds of GPa. Planar loading allows for quantitative compression measurements; the objective of our low-entropy compression is to keep the sample cold enough to characterize crystalline hydrogen toward the terapascal range.more » « less
-
The ionic structure of high-pressure, high-temperature fluids is a challenging theoretical problem with applications to planetary interiors and fusion capsules. Here we report a multimessenger platform using velocimetry and angularly and spectrally resolved x-ray scattering to measure the thermodynamic conditions and ion structure factor of materials at extreme pressures. We document the pressure, density, and temperature of shocked silicon near with uncertainties of 6%, 2%, and 20%, respectively. The measurements are sufficient to distinguish between and rule out some ion screening models. Published by the American Physical Society2024more » « less
-
X-ray radiography is a technique frequently used to diagnose convergent high-energy-density (HED) systems, such as inertial confinement fusion implosion, and provides unique information that is not available through self-emission measurements. We investigate the scope and limits of that information using a radiography simulation combined with the Bayesian inference workflow. The accuracy of density reconstruction from simulated radiographs of spherical implosions driven with 27 kJ laser energy is assessed, including the increase or decrease in accuracy due to the addition of Lagrangian marker layers, Poisson noise, and improved prior information. This work is the first to present the full uncertainty distributions inferred from radiography analysis in HED systems and demonstrates the importance of constructing the full posterior probability density, as opposed to a point estimate, due to the modal structure of the likelihood surface introduced by typical experimental noise sources. This general methodology can be used both for robust analysis of radiographic data and for an improved design of radiography experiments by modeling the full experimental system.more » « less
-
Time-gated Sc K-shell and Ge L-shell spectra are presented from a range of characterized thermodynamic states spanning ion densities of 1019–1020cm−3 and plasma temperatures around 2000 eV. For the higher densities studied and temperatures from 1000 to 3000 eV, the Sc and Ge x-ray emission spectra are consistent with steady-state calculations from the modern atomic kinetics model SCRAM. At the lower ion densities achieved through plasma expansion, however, the model calculations require a higher plasma temperature to reproduce the observed Ge spectrum. We attribute this to ionization disequilibrium of the Sc because the ionization time scales exceed the hydrodynamic timescale when the inferred temperatures diverge.more » « less
-
Abstract There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.more » « less
An official website of the United States government
